Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3-Dichloro-1-(chloromethyl)indolin-2one

Yao Wang, Chong-Qing Wan, Tingting Zheng and Sheng-Li Cao*

Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China Correspondence e-mail: sl_cao@sohu.com

Received 17 September 2010; accepted 11 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.094; data-to-parameter ratio = 19.3.

In the title compound, $C_9H_6Cl_3NO$, the pyrrole ring is almost coplanar with the benzene ring [dihedral angle = 1.90 (9)°], while the Cl-C-N-C torsion angle is 98.78 (17)°. In the crystal, pairs of molecules are interconnected by pairs of Cl···Cl interactions [3.564 (5) Å], forming dimers, which are further peripherally connected through intermolecular C-H···O=C and π - π interactions [centroid-centroid distances = 4.134 (7), 4.134 (6) and 4.238 (7) Å], forming a twodimensional network.

Related literature

For the synthesis of the title compound, see: Höhme & Schwartz, (1974). For the synthesis of 1-(chloromethyl) indoline-2,3-dione, see: Höhme & Schwartz, (1973). For Cl···Cl interactions, see: Reddy *et al.* (2006).

Experimental

Crystal data C₉H₆Cl₃NO

 $M_r = 250.50$

Monoclinic, $P2_1/c$ a = 8.6102 (1) Å b = 14.5573 (2) Å c = 8.2461 (1) Å $\beta = 93.381$ (1)° V = 1031.78 (2) Å ³	Z = 4 Mo K α radiation $\mu = 0.85 \text{ mm}^{-1}$ T = 296 K $0.16 \times 0.12 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector diffractometer 13146 measured reflections	2450 independent reflections 2156 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.016$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.094$ S = 1.06 2450 reflections	127 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.41$ e Å ⁻³ $\Delta \rho_{\text{min}} = -0.49$ e Å ⁻³
Table 1	

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C4-H4\cdots O1^i$	0.93	2.57	3.173 (2)	123	
Symmetry code: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$.					

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2* and *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

This work was supported by the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education (project No. KM200710028008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2158).

References

Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Höhme, H. & Schwartz, H. (1973). Arch. Pharm. 306, 684-692.

Höhme, H. & Schwartz, H. (1974). Arch. Pharm. 307, 775-779.

Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). *Chem. Eur. J.* 12, 2222–2234.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o2858 [doi:10.1107/S1600536810040717]

3,3-Dichloro-1-(chloromethyl)indolin-2-one

Y. Wang, C.-Q. Wan, T. Zheng and S.-L. Cao

Comment

Höhme and Schwartz reported that the reaction of 1-(hydroxymethyl) indoline-2,3-dione with SOCl₂ gave 1-(chloromethyl) indoline-2,3-dione (Höhme & Schwartz, 1973), whereas the reaction in the presence of a small amount of pyridine gave the title compound (Höhme & Schwartz, 1974). However, our experimental results showed that the title compound could also be obtained from the reaction in the absence of pyridine. Here, we report the structure of the title compound.

X-ray crystal analysis shows that the pyrrole ring almost lies within the plane of the benzene ring, while the torsion angle Cl2—C9—N1—C8 equals 98.78 (17)°, as shown in Fig.1. Two molecules arrange in a face to face mode and thus interconnect through intermolecular Cl1…Cl2(-x + 1, -y + 1, -z + 2) interactions (Cl…Cl=3.564 (5) Å) (Reddy *et al.*, 2006), forming a dimer. Each dimeric unit peripherically links to four neihgbouring ones through intermolecular C4—H4…O1=C8 interactions (Table 1), generating a two-dimensional network. π - π interactions (Table 2) between the approximate parallel benzene and/or parrole rings cooperate with those weak interactions to consolidate the supramolecular structure, as shown in Fig. 2.

Experimental

A mixture of indoline-2,3-dione (3.0 g, 0.02 mol) and formalin (5 ml) in 30 ml of water was refluxed for 1 h. After that, the reaction mixture was stirred at room temperature overnight. The resulting precipitate, 1-(hydroxymethyl)indoline-2,3-dione, was separated by filtration and purified by recrystallization from ethanol, which was heated with SOCl₂ (25 ml) under reflux for 3.5 h. The reaction mixture was distilled in vacuum to remove excess SOCl₂ and the residue was purified by column chromatography on silica gel using dichloromethane/methanol=98:2, v/v, as an eluent (R_f =0.33, dichloromethane/methanol=98:2, v/v; m.p. 141–143°C; yield 50.5% in two steps). The light yellow crystals of the title compound were obtained by slow evaporation from the solution of dichloromethane methanol 98:2 (v/v) at room temperature.

Refinement

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H=0.93 Å for aryl H atoms and U_{iso} (H)=1.2 U_{eq} (C).

Figures

Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 50% probability level.

Fig. 2. Cl···Cl and C-H···O=C interactions in the crystalline structure of the title compound. The blue dashed lines indicate Cl···Cl interaction, while the red dashed lines represent C—H···O=C interactions. All the π - π stacking interactions are omitted for clarity. Symmetry codes: iii-x + 1, -y + 1, -z + 2; iv-x + 1, y - 1/2, -z + 3/2.

3,3-Dichloro-1-(chloromethyl)indolin-2-one

Crystal data	
C9H6Cl3NO	F(000) = 504
$M_r = 250.50$	$D_{\rm x} = 1.613 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.613 \text{ Mg m}^{-3}$ $D_{\rm m}$ measured by not measured
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 8.6102 (1) Å	Cell parameters from 7007 reflections
b = 14.5573 (2) Å	$\theta = 2.5 - 27.8^{\circ}$
c = 8.2461 (1) Å	$\mu = 0.85 \text{ mm}^{-1}$
$\beta = 93.381 (1)^{\circ}$	T = 296 K
V = 1031.78 (2) Å ³	Block, yellow
Z = 4	$0.16 \times 0.12 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	2156 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.016$
graphite	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 2.4^\circ$
phi and ω scans	$h = -11 \rightarrow 11$
13146 measured reflections	$k = -19 \rightarrow 19$
2450 independent reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.094$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0433P)^2 + 0.4377P]$ where $P = (F_o^2 + 2F_c^2)/3$
2450 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
127 parameters	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.4139 (2)	0.66723 (13)	0.5958 (2)	0.0448 (4)
0.3747	0.6171	0.5275	0.054*
0.4404	0.7176	0.5255	0.054*
0.72991 (7)	0.48322 (4)	0.99637 (6)	0.06304 (17)
0.87749 (7)	0.48989 (4)	0.69017 (7)	0.06607 (17)
0.26419 (5)	0.70402 (4)	0.72483 (7)	0.06448 (17)
0.9042 (2)	0.68812 (13)	0.9240 (2)	0.0478 (4)
0.9838	0.6541	0.9762	0.057*
0.9062 (2)	0.78348 (14)	0.9279 (3)	0.0533 (4)
0.9882	0.8138	0.9836	0.064*
0.7883 (2)	0.83366 (12)	0.8503 (2)	0.0497 (4)
0.7922	0.8975	0.8545	0.060*
0.66346 (19)	0.79124 (11)	0.7659 (2)	0.0415 (4)
0.5837	0.8252	0.7139	0.050*
0.66323 (17)	0.69655 (10)	0.76292 (19)	0.0345 (3)
0.78112 (18)	0.64512 (11)	0.84075 (19)	0.0373 (3)
0.74369 (19)	0.54609 (11)	0.8146 (2)	0.0410 (3)
0.58313 (19)	0.54734 (11)	0.7189 (2)	0.0402 (3)
0.54994 (15)	0.63781 (9)	0.68728 (17)	0.0385 (3)
0.50408 (18)	0.48209 (9)	0.68047 (17)	0.0562 (3)
	x 0.4139 (2) 0.3747 0.4404 0.72991 (7) 0.87749 (7) 0.26419 (5) 0.9042 (2) 0.9838 0.9062 (2) 0.9882 0.7883 (2) 0.7922 0.66346 (19) 0.5837 0.66323 (17) 0.78112 (18) 0.74369 (19) 0.58313 (19) 0.54994 (15) 0.50408 (18)	x y $0.4139(2)$ $0.66723(13)$ 0.3747 0.6171 0.4404 0.7176 $0.72991(7)$ $0.48322(4)$ $0.87749(7)$ $0.48989(4)$ $0.26419(5)$ $0.70402(4)$ $0.9042(2)$ $0.68812(13)$ 0.90838 0.6541 $0.9062(2)$ $0.78348(14)$ 0.9882 0.8138 $0.7883(2)$ $0.83366(12)$ 0.7922 0.8975 $0.66346(19)$ $0.79124(11)$ 0.5837 0.8252 $0.66323(17)$ $0.69655(10)$ $0.78112(18)$ $0.64512(11)$ $0.74369(19)$ $0.54609(11)$ $0.54994(15)$ $0.63781(9)$ $0.50408(18)$ $0.48209(9)$	x y z $0.4139(2)$ $0.66723(13)$ $0.5958(2)$ 0.3747 0.6171 0.5275 0.4404 0.7176 0.5255 $0.72991(7)$ $0.48322(4)$ $0.99637(6)$ $0.87749(7)$ $0.48989(4)$ $0.69017(7)$ $0.26419(5)$ $0.70402(4)$ $0.72483(7)$ $0.9042(2)$ $0.68812(13)$ $0.9240(2)$ $0.9042(2)$ $0.68812(13)$ $0.9240(2)$ $0.9062(2)$ $0.78348(14)$ $0.9279(3)$ 0.9882 0.8138 0.9836 $0.7883(2)$ $0.83366(12)$ $0.8503(2)$ 0.7922 0.8975 0.8545 $0.66346(19)$ $0.79124(11)$ $0.7659(2)$ 0.5837 0.8252 0.7139 $0.66323(17)$ $0.69655(10)$ $0.76292(19)$ $0.78112(18)$ $0.64512(11)$ $0.84075(19)$ $0.74369(19)$ $0.54734(11)$ $0.7189(2)$ $0.54994(15)$ $0.63781(9)$ $0.68047(17)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
С9	0.0434 (8)	0.0522 (9)	0.0379 (8)	0.0048 (7)	-0.0044 (7)	-0.0021 (7)
Cl1	0.0768 (3)	0.0574 (3)	0.0547 (3)	0.0061 (2)	0.0024 (2)	0.0214 (2)
C13	0.0658 (3)	0.0575 (3)	0.0769 (4)	0.0237 (2)	0.0207 (3)	-0.0084 (2)
Cl2	0.0411 (2)	0.0907 (4)	0.0615 (3)	0.0133 (2)	0.0021 (2)	-0.0031 (3)
C1	0.0344 (8)	0.0575 (10)	0.0512 (10)	0.0034 (7)	-0.0008 (7)	0.0031 (8)
C2	0.0421 (9)	0.0578 (11)	0.0595 (11)	-0.0122 (8)	-0.0006 (8)	-0.0053 (9)
C3	0.0509 (10)	0.0381 (8)	0.0609 (11)	-0.0072 (7)	0.0093 (8)	-0.0033 (8)
C4	0.0415 (8)	0.0350 (7)	0.0482 (9)	0.0034 (6)	0.0053 (7)	0.0020 (6)
C5	0.0332 (7)	0.0345 (7)	0.0361 (7)	0.0023 (5)	0.0045 (6)	-0.0008 (6)
C6	0.0358 (7)	0.0380 (8)	0.0386 (8)	0.0064 (6)	0.0062 (6)	0.0018 (6)
C7	0.0452 (8)	0.0369 (8)	0.0416 (8)	0.0106 (6)	0.0072 (7)	0.0039 (6)
C8	0.0473 (8)	0.0355 (7)	0.0383 (8)	0.0015 (6)	0.0075 (7)	-0.0014 (6)
N1	0.0379 (6)	0.0344 (6)	0.0428 (7)	0.0032 (5)	-0.0013 (5)	-0.0021 (5)
01	0.0701 (9)	0.0399 (6)	0.0583 (8)	-0.0114 (6)	0.0012 (7)	-0.0040 (6)
Geometric para	meters (Å, °)					
C9N1		1 422 (2)	C3	C4	1 3	(2)
C_{2}		1.422(2) 1 8009(18)	C3-	H3	0.0200	
С9—Н9А		0.9700	C4	C5	0.2300	
C9_H9B		0.9700	C4	H4	1.5	300
C_{11}		1 7664 (17)	C5—	п. . Сб	1.3	38 (2)
Cl3-C7		1.7856 (16)	C5—	N1	1.5	14 (2)
C1-C6		1 378 (2)	C6—	C7	1.4	90(2)
C1-C2		1 389 (3)	C7—	C8	1.5	51 (2)
C1—H1		0.9300	C8—	01	1.2	(2)
C2-C3		1 378 (3)	C8—	N1	1.2	59 (2)
С2—Н2		0.9300			110	(_)
N1—C9—Cl2		111.84 (12)	C4—	C5—C6	122	.06 (15)
N1—C9—H9A		109.2	C4—	C5—N1	127	.79 (14)
Сl2—С9—Н9А		109.2	С6—	C5—N1	110	.15 (13)
N1—C9—H9B		109.2	C1—	C6—C5	120	.33 (15)
Cl2—C9—H9B		109.2	C1—	C6—C7	131	.67 (15)
Н9А—С9—Н9В		107.9	С5—	C6—C7	107	.99 (14)
C6—C1—C2		118.30 (16)	С6—	С7—С8	103	.95 (12)
С6—С1—Н1		120.9	С6—	C7—Cl1	113	.78 (12)
C2-C1-H1		120.9	C8—	C7—Cl1	109	.59 (12)
C3—C2—C1		120.73 (17)	С6—	C7—Cl3	112	.65 (12)
С3—С2—Н2		119.6	C8—	C7—Cl3	107	.40 (11)
C1—C2—H2		119.6	Cl1–	-C7-Cl3	109	.15 (8)
C2—C3—C4		121.61 (16)	01—	-C8N1	127	.02 (16)
С2—С3—Н3		119.2	01—	-C8—C7	126	.84 (15)
С4—С3—Н3		119.2	N1—	-C8—C7	106	.13 (13)
C5—C4—C3		116.96 (16)	C8—	N1—C5	111	.52 (13)

С5—С4—Н4	121.5	C8—N1—C9	123.16 (14)
C3—C4—H4	121.5	C5—N1—C9	125.26 (13)
C6—C1—C2—C3	-0.1 (3)	C6—C7—C8—O1	-175.08 (17)
C1—C2—C3—C4	0.1 (3)	Cl1—C7—C8—O1	-53.1 (2)
C2—C3—C4—C5	-0.2 (3)	Cl3—C7—C8—O1	65.3 (2)
C3—C4—C5—C6	0.3 (2)	C6—C7—C8—N1	4.91 (17)
C3—C4—C5—N1	179.42 (16)	Cl1—C7—C8—N1	126.87 (12)
C2—C1—C6—C5	0.2 (3)	Cl3—C7—C8—N1	-114.67 (12)
C2—C1—C6—C7	-179.47 (18)	O1—C8—N1—C5	174.89 (17)
C4—C5—C6—C1	-0.3 (2)	C7—C8—N1—C5	-5.10 (18)
N1—C5—C6—C1	-179.56 (15)	O1—C8—N1—C9	-2.4 (3)
C4—C5—C6—C7	179.42 (15)	C7—C8—N1—C9	177.62 (14)
N1—C5—C6—C7	0.16 (18)	C4—C5—N1—C8	-175.89 (16)
C1—C6—C7—C8	176.63 (17)	C6—C5—N1—C8	3.31 (19)
C5—C6—C7—C8	-3.04 (17)	C4—C5—N1—C9	1.3 (3)
C1—C6—C7—Cl1	57.5 (2)	C6-C5-N1-C9	-179.48 (15)
C5—C6—C7—Cl1	-122.18 (13)	Cl2—C9—N1—C8	98.78 (17)
C1—C6—C7—Cl3	-67.4 (2)	Cl2—C9—N1—C5	-78.12 (19)
C5—C6—C7—Cl3	112.91 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C4—H4···O1 ⁱ	0.93	2.57	3.173 (2)	123
С9—Н9А…О1	0.97	2.56	2.879 (2)	100
C9—H9A…O1 ⁱⁱ	0.97	2.52	3.256 (2)	133
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+3/2$; (ii) $-x+1$,	, -y+1, -z+1.			

Table 2

 π - π interactions

Cg(A)	Cg(B)	Cg(A)···Cg(B) (Å)	sym. code Cg(B)
Cg1	Cg1	4.134 (7)	x, -y +3/2, z-1/2
Cg1	Cg1	4.134 (6)	x, -y +3/2, z+1/2
Cgl	Cg2	4.238 (7)	x, -y +3/2, z-1/2

* Cg1, Cg2 are the centroids of C1-C2-C3-C4-C5-C6 (benzene) and C5-C6-C7-C8-N1 (pyrrole), respectively.

Fig. 1

